Электротехника и теория цепей Законы Ома и Кирхгофа Управляемые источники тока и напряжения Анализ цепей методом комплексных амплитуд Баланс мощностей Метод контурных токов Метод узловых напряжений

Ветви электрической цепи нумеруют арабскими цифрами, начиная с единицы. Номера ветвей удобно выбирать совпадающими с номерами соответствующих токов, в этом случае номера ветвей на схеме можно не указывать. Узлы электрической цепи нумеруют, начиная с нуля. Порядок нумерации узлов значения не имеет, однако номер «0» удобно присваивать заземленному узлу или узлу, к которому сходится наибольшее число ветвей. Номера узлов условимся обозначать арабскими цифрами в круглых скобках, проставленными около соответствующего узла.

Любой замкнутый путь, проходящий по нескольким ветвям цепи, называется контуром. Например, в электрической цепи, схема которой приведена на рис. 2.2, б можно выделить шесть контуров, образованных ветвями {1,2}, {2,3}, {3,4}, {1,4}, {2,4} и {1,3}. Неразветвленная цепь (см. рис. 2.1, а) содержит только один контур.

В отличие от электрических элементов моделирующих цепей ветви, узлы и контуры называются топологическими элементами. Степень сложности исследования процессов в электрических цепях во многом определяется числом топологических элементов.

2.2. Понятие о компонентных и топологических уравнениях. Законы Кирхгофа

Математическое описание процессов в электрических цепях базируется на уравнениях двух типов: компонентных и топологических.

Компонентные уравнения (уравнения ветвей) устанавливают связь между током и напряжением каждой ветви. Количество таких уравнений равно числу ветвей, а вид каждого из них зависит только от состава ветви, т. е. от входящих в ее состав идеализированных двухполюсных элементов.

Топологические уравнения отражают свойства цепи, которые определяются только её топологией и не зависят от того, какие, электрические элементы входят в состав ветвей. К топологическим относятся уравнения, составленные на основании первого и второго законов Кирхгофа.

Первый закон Кирхгофа устанавливает связь между токами ветвей в каждом из узлов цепи: алгебраическая сумма мгновенных значений токов всех ветвей, подключенных к каждому из узлов цепи, в любой момент времени равна нулю.

В соответствии с первым законом Кирхгофа для каждого из узлов идеализированной цепи (как при расширенном, так и при сокращенном топологическом описании) может быть составлено уравнение баланса токов в узле

 (2.1)

где  номер ветви, подключенной к рассматриваемому узлу.

Суммирование токов производится с учетом выбранных положительных направлений: всем токам, одинаково ориентированным относительно узла, приписывается одинаковый знак.

На основании первого закона Кирхгофа можно составить уравнение баланса токов и для так называемого обобщенного узла, который представляет собой часть моделирующей цепи, охваченную произвольной замкнутой поверхностью. В этом случае в уравнении (2.1) алгебраически суммируются токи всех ветвей, входящих в обобщенный узел, т. е. токи всех ветвей, пересекаемых указанной замкнутой поверхностью.

Второй закон Кирхгофа устанавливает связь между напряжениями ветвей, входящих в произвольный контур: алгебраическая сумма мгновенных значений напряжений всех ветвей, входящих в любой контур цепи, в каждый момент времени равна нулю.

В соответствии со вторым законом Кирхгофа для каждого контура можно составить уравнения баланса напряжении ветвей

 (2.2)

где  - номера ветвей, входящих в рассматриваемый контур.

Суммирование напряжений производится с учетом их положительных направлений и выбранного направления обхода контура. Если положительное направление напряжения ветви совпадает с направлением обхода контура, то оно входит в (2.2) со знаком плюс, в противном случае – со знаком минус. Изменение направления обхода контура, очевидно, соответствует умножению левой и правой частей (2.2) на (–1).

Уравнения по второму закону Кирхгофа можно составить не только для напряжений ветвей, но и для напряжений элементов, входящих в ветви каждого контура. Представляя напряжение каждой ветви в виде суммы напряжений элементов этой ветви и принимая во внимание, что положительное направление напряжения источника э. д. с. противоположно направлению э. д. с., систему уравнений (2.2) можно преобразовать к следующему виду:

 (2.3)

Здесь  - напряжения каждого из элементов рассматриваемого контура, за исключением напряжений источников э. д. с.;  - э. д. с. источников напряжения, действующих в контуре.

Используя (2.2), можно несколько видоизменить формулировку второго закона Кирхгофа: алгебраическая сумма мгновенных значений напряжений на элементах любого контура моделирующей цепи в каждый момент времени равна алгебраической сумме мгновенных значений э. д. с. источников напряжения, действующих в этом контуре. Напряжения на элементах контура и э. д. с. источников напряжения входят в (2.3) со знаком плюс, если положительные направления напряжений на элементах и направления э. д. с. источников напряжения совпадают с направлением обхода контура. В противном случае соответствующие слагаемые в (2.3) берутся со знаком минус.

Так как вид и число уравнений, составленных на основании законов Кирхгофа, не зависят от того, какие элементы входят в состав цепи, и определяются только ее топологическими особенностями, то уравнения баланса токов и напряжений можно применять для математического описания процессов в моделирующих цепях, составленных из двухполюсных элементов любого типа (как линейных, так и нелинейных) при любой форме токов и напряжений независимых источников.

Очевидно, что количество уравнений баланса токов и напряжений равно сумме числа узлов и числа контуров исследуемой цепи. Можно убедиться; что не все из составленных уравнений будут линейно независимыми.

В то же время на основании законов Кирхгофа для каждой цепи можно составить несколько различных систем линейно независимых топологических уравнений.

Будем называть системой независимых узлов и системой независимых контуров любые совокупности узлов и контуров цепи, для которых можно составить системы линейно независимых уравнений по законам Кирхгофа. Определение числа независимых узлов и контуров, а также выделение систем соответствующих узлов и контуров являются основными задачами топологии цепей.


Анализ цепей методом комплексных амплитуд