Лекции и задачи по физике Колебания и волны

Учебник для Худ-графа
Живопись 19 век
Архитектура 19 века
Культура 20 века
Скульптура
Искусство
Западний Европы
Искусство России
Архитектура Германии
Антонио Канова
Бертель Торвальдсен
Готфрид фон Шадов
Живопись Испании
Франсиско Гойя
Живопись Франции
Жак Луи Давид
Антуан Гро
Жан Огюст Доминик Энгр
Теодор Жерико
Эжен Делакруа
Живопись Германии
Филипп Отто Рунге
Каспар Давид Фридрих
Живопись Англии
Уильям Блейк
Джон Констебл
Джеймс Уистлер
Уильям Тернер
Архитектура и скульптура
Огюст Роден
Камиль Коро
Жан Франсуа Милле
Оноре Домье
Эдуард Мане
Импрессионизм
Клод Моне
Огюст Ренуар
Неоимпрессионизм
Жорж Сера
Постимпрессионизм
Поль Гоген
Живопись Германии
Андерс Цорн
Искусство XIX-XX веков
Обри Бердсли
Гютсав Моро
Одилон Редон
Пьер Морис Дени
Анри Руссо
Модерн
Фердинанд  Ходлер
Джеймс Энсор
Архитектура
Отто Вагнер
Йозеф Хофман
Чарлз Ренни Макинтош
Луис Салливен
Эктор Гимар
Петер Беренс
Антуан Бурдель
Аристод Майоль
Искусство XX века
Людвиг Мисс Ван дер Роэ Один из ведущих архитекторов Германии и США
Ле Корбюзье
Архитектура второй
половины XX века
Национальный конгресс
Скульптура
Генри Мур
Скульптура конструктивизма
Живопись
Фовизм
Анри Матисс
Экспрессионизм
Кубизм
Пабло Пикассо
Футуризм
Неопластицизм
Дадаиз
Сюрреализм
Сальвадор Дали
Оп-арт
Гиперреализм
Боди-арт
Концептуализм
Искусство России
Архитектура
Союз архитекторов
Всероссийский выставочный центр
Дворец съездов
Скульптура
Рабочий и колхозница
Воин-освободитель
Памятник Юрию Долгорукому
Живопись
Кузьма Петров-Водкин
Выставка Бубновый валет
Выставка «Ослиный хвост»
Марк Шагал
Василий Кандинский
Павел Филонов
Кубофутуризм
Казимир Малевич
Владимир Татлин
Художественные объединения
Общество Московских
Художников
Лианозовская группа
Сюрреализм
Соц-арт
Искусство Доколумбовой
Америки
Культура Ацтеков
Европа 18 век
Луврский музей в Париже
Архитектура Позднего
Барокко
Британский музей
в Лондоне
Картинная галерея старых мастеров в Дрездене
Архитектура
Санкт-Петербурга
Европа 17 век
Болонская академия
Эль Греко
Питер Пауэл Рубенс
Рембрандт Ван Рейн
Никола Пуссен
Искусство Возрождения
Леонардо да Винчи
Живописец Рафаэль
Искусство Маньеризма
Микеланджело Буонарроти
3D Studio Max
Установка
Моделирование
Освещение и текстуры
Анимация и визуализация
Советы
Программа Maya
Методы работы
Моделирование
Полигоны
Освещение
Анимация и визуализация
Эффекты рисования
Эффективность и артистичность
Графический редактор ACAD
Основные понятия
Подготовка рабочей среды
Черчение в ACAD
Трехмерное моделирование

Основы теории Максвелла для электромагнитного поля Вихревое электрическое поле Из закона Фарадея (см. (123.2)) =–dФ/dt следует, что любое изменение сцепленного с контуром потока магнитной индукции приводит к возникновению электродвижущей силы индукции и вследствие этого появляется индукционный ток. Следовательно, возникновение э.д.с. электромагнитной индукции возможно и в неподвижном контуре,находящемся в переменном магнитном поле. Однако э.д.с. в любой цепи возникает только тогда, когда в ней на носители тока действуют сторонние силы — силы неэлектростатического происхождения

Уравнения Максвелла для электромагнитного поля Введение Максвеллом понятия тока смещения привело его к завершению созданной им макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование которых было впоследствии подтверждено.

Механические и электромагнитные колебания Гармонические колебания и их характеристики Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. При колебательном движении маятника изменяется координата его центра масс, в случае переменного тока колеблются напряжение и ток в цепи. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электромагнитные и др. Однако различные колебательные процессы описываются одинаковыми характеристиками и одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы. Например, единый подход к изучению механических и электромагнитных колебаний применялся английским физиком Д. У. Рэлеем (1842—1919), А. Г. Столетовым, русским инженером-экспериментатором П. Н. Лебедевым (1866—1912). Большой вклад в развитие теории колебаний внесли Л. И. Мандельштам (1879—1944) и его ученики.

Механические гармонические колебания Пусть материальная точка совершает прямолинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало координат.

Свободные гармонические колебания в колебательном контуре Среди различных электрических явлений особое место занимают электромагнитные колебания, при которых электрические величины (заряды, токи) периодически изменяются и которые сопровождаются взаимными превращениями электрического и магнитного полей. Для возбуждения и поддержания электромагнитных колебаний используется колебательный контур — цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R.

Взаимодействие света с веществом.

Сложение гармонических колебаний одного направления и одинаковой частоты. Биения Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические колебания одного направления и одинаковой частоты

Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания Рассмотрим свободные затухающие колебания – колебания, амплитуды которых из-за потерь энергии реальной колебательной системой с течением времени уменьшаются. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических колебательных системах, а также омических потерь и излучения электромагнитной энергии в электрических колебательных системах.

Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение Чтобы в реальной колебательной системе получить незатухающие колебания, надо компенсировать потери энергии

Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс Рассмотрим зависимость амплитуды А вынужденных колебаний от частоты w. Механические и электромагнитные колебания будем рассматривать одновременно, называя колеблющуюся величину либо смещением (х) колеблющегося тела из положения равновесия, либо зарядом (Q) конденсатора.

Упругие волны Волновые процессы. Продольные и поперечные волны Колебания, возбужденные в какой-либо точке среды (твердой, жидкой или газообразной), распространяются в ней с конечной скоростью, зависящей от свойств среды, передаваясь от одной точки среды к другой. Чем дальше расположена частица среды от источника колебаний, тем позднее она начнет колебаться. Иначе говоря, фазы колебаний частиц среды и источника тем больше отличаются друг от друга, чем больше это расстояние. При изучении распространения колебаний не учитывается дискретное (молекулярное) строение среды и среда рассматривается как сплошная, т. е. непрерывно распределенная в пространстве и обладающая упругими свойствами.

Принцип суперпозиции. Групповая скорость Если среда, в которой распространяется одновременно несколько волн, линейна, т. е. ее свойства не изменяются под действием возмущений, создаваемых волной, то к ним применим принцип суперпозиции (наложения) волн: при распространении в линейной среде нескольких волн каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвуя в каждом из слагающих волновых процессов.

Стоячие волны Особым случаем интерференции являются стоячее волны — это волны, образующиеся при наложении двух бегущих воли, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами, а в случае поперечных волн и одинаковой поляризацией.

Эффект Доплере в акустике Эффектом Доплера* называется изменение частоты колебаний, воспринимаемой приемником, при движении источника этих колебаний и приемника друг относительно друга. Например, из опыта известно, что тон гудка поезда повышается по мере его приближения к платформе и понижается при удалении, т. е. движение источника колебаний (гудка) относительно приемника (уха) изменяет частоту принимаемых колебаний.

Электромагнитные волны Экспериментальное получение электромагнитных волн Существование электромагнитных волн — переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью, — вытекает из уравнений Максвелла. Уравнения Максвелла сформулированы в 1865 г. на основе обобщения эмпирических законов электрических и магнитных явлений. Как уже указывалось, решающую роль для утверждения максвелловской теории сыграли опыты Герца (1888), доказавшие, что электрические и магнитные поля действительно распространяются в виде воли, поведение которых полностью описывается уравнениями Максвелла.

Энергия электромагнитных волн. Импульс электромагнитного поля Возможность обнаружения электромагнитных воли указывает на то, что они переносят энергию

Статистическая физика

Молекулярно-кинетическая теория

 Концентрация частиц (молекул, атомов и т. п.) однородной системы

n=N/V,

где V — объем системы.

 Основное уравнение кинетической теории газов

p=2/зn<eп>,

где р — давление газа; <eп>— средняя кинетическая энергия* поступательного движения молекулы.

 Средняя кинетическая энергия:

приходящаяся на одну степень свободы молекулы 

<e1>=½kT;

;

поступательного движения молекулы

,

где k — постоянная Больцмана; Т — термодинамическая температура; i — число степеней свободы молекулы;

вращательного движения молекулы

 Зависимость давления газа от концентрации молекул и температуры

p=nkT.

Скорость молекул:

средняя квадратичная

, или ;

средняя арифметическая

, или ;

наиболее вероятная

, или ,

где m1 — масса одной молекулы.

Явления переноса

 Среднее число соударений, испытываемых одной молекулой газа в единицу времени,

,

где d — эффективный диаметр молекулы; п — концентрация молекул; <υ> — средняя арифметическая скорость молекул.

 Средняя длина свободного пробега молекул газа

.

 Импульс (количество движения), переносимый молекулами из одного слоя газа в другой через элемент поверхности,

,

где h— динамическая вязкость газа; —градиент (поперечный) скорости течения его слоев; DS — площадь элемента поверхности; dt — время переноса.

 Динамическая вязкость

h=r<υ><l>

где r — плотность газа (жидкости); <υ> — средняя скорость хаотического движения его молекул; <l> — их средняя длина свободного пробега.

 Закон Ньютона

,

где F — сила внутреннего трения между движущимися слоями газа.

 Закон Фурье

DQ= -lSDt,

где DQ — теплота, прошедшая посредством теплопроводности через сечение площадью S за время Dt; l — теплопроводность; - градиент температуры.

 Теплопроводность .(коэффициент теплопроводности) газа

l=cvr<υ><l> или l=<υ><l>,

где cv — удельная теплоемкость газа при постоянном объеме; r — плотность газа; <υ> — средняя арифметическая скорость его молекулы; <l> — средняя длина свободного пробега молекул.

 Закон Фика

,

где Dm — масса газа, перенесенная в результате диффузии через поверхность площадью S за время Dt; D — диффузия (коэффициент Эффузии); -градиент концентрации молекул; m1 —масса одной молекулы.

 Диффузия (коэффициент диффузии)

D=<υ><l>.

Статистические распределения

 Распределение Больцмана (распределение частиц в силовом поле)

n=n0e-U/(kT),

где п — концентрация частиц; U — их потенциальная энергия; n0 — концентрация частиц в точках поля, где U=0; k — постоянная Больцмана; T — термодинамическая температура.

 Барометрическая формула (распределение давления в однородном поле силы тяжести)

р=p0e-mgz/(kT), или p=p0e-Mgz/(RT),

где р — давление газа; m — масса частицы; М — молярная масса; z — координата (высота) точки по отношению к уровню, принятому за нулевой; р0 — давление на этом уровне; g — ускорение свободного падения; R — молярная газовая постоянная.

 Вероятность того, что физическая величина х, характеризующая молекулу, лежит в интервале значений от х до x+dx, определяется по формуле

dW(x)=f(x)dx

где f(x)—функция распределения молекул по значениям данной физической величины х (плотность вероятности).

 Количество молекул, для которых физическая величина х, характеризующая их, заключена в интервале значений от х до x+dx,

dN=NdW(x)=Nf(x)dx.

 Распределение Максвелла (распределение молекул по скоростям) выражается двумя соотношениями:

а) число молекул, скорости которых заключены в пределах от J до J+dJ,

,

где f(υ) —функция распределения молекул по модулям скоростей, выражающая отношение вероятности того, что скорость молекулы лежит в интервале от υ до υ+dυ, к величине этого интервала, а также долю числа молекул, скорости которых лежат в указанном интервале; N — общее число молекул; m — масса молекулы;

б) число молекул, относительные скорости которых заключены в пределах от u до u+du,

где u=υ/υв — относительная скорость, равная отношению скорости J к наивероятнейшей скорости υв; f(u) — функция распределения по относительным скоростям.

 Распределение молекул по импульсам. Число молекул, импульсы которых заключены в пределах от р до p+dp,

,

где f(p) — функция распределения по импульсам.

 Распределение молекул по энергиям. Число молекул, энергии которых заключены в интервале от e до e+de,

,

где f(e)—функция распределения по энергиям.

 Среднее значение физической величины х в общем случае

,

а в том случае, если функция распределения нормирована на единицу,

<x>=òxf(x)dx

где f(x) — функция распределения, интегрирование ведется по всей совокупности изменений величины х.

Например, среднее значение скорости молекулы (т. е. средняя арифметическая скорость)

;

средняя квадратичная скорость

<υкв>=<υ2>1/2,

где

;

средняя кинетическая энергия поступательного движения молекулы .

Тепловые свойства

Молярная внутренняя энергия химически простых (состоящих из одинаковых атомов) твердых тел в классической теории теплоемкости выражается формулой

Um = 3RT,

где R — молярная газовая постоянная; Т — термодинамическая температура.

Теплоемкость С системы (тела) при постоянном объеме определяется как производная от внутренней энергии U по температуре, т. е.

C = dU/dT.

Закон Дюлонга и Пти. Молярная теплоемкость Cm химически простых твердых тел

Cm = 3R

Закон Неймана — Коппа. Молярная теплоемкость химически сложных тел (состоящих из различных атомов)

Сm = n×ЗR,

где п — общее число частиц в химической формуле соединения.

Среднее значение энергии  квантового осциллятора, приходящейся на одну степень свободы, в квантовой теории Эйнштейна выражается формулой

где e0 — нулевая энергия (e0 = 1/2ħw); ħ — постоянная Планка;

w — круговая частота колебаний осциллятора; k — постоянная Больцмана; Т — термодинамическая температура.

Молярная внутренняя энергия кристалла в квантовой теории теплоемкости Эйнштейна определяется по формуле

где Umo = 3/2RqE — молярная нулевая энергия по Эйнштейну;

qE = ħw/k — характеристическая температура Эйнштейна.

Молярная теплоемкость кристалла в квантовой теории теплоемкости Эйнштейна

При низких температурах (T<<qE)

Сm = 3R(qE/T)exp(-qE/T).

Частотный спектр колебаний в квантовой теории теплоемкости Дебая задается функцией распределения частот g(w). Число dZ собственных частот тела, приходящихся на интервал частот от w до w dw, определяется выражением

dZ =g(w)dn

Для трехмерного кристалла содержащего N атомов,

,

где wmax — максимальная частота, ограничивающая спектр колебаний.

Энергия U твердого тела связана с средней энергией  квантового осциллятора и функцией распределения частот g(w) соотношением

Молярная внутренняя энергия кристалла по Дебаю

где -молярная нулевая энергия кристалла по Дебаю; -характеристическая температура Дебая.

Молярная теплоёмкость, кристалла по Дебаю

Предельный закон Дебая. В области низких температур1 (Т<<qВ) последняя формула принимает вид

.

История живописи, архитектуры, скульптуры Популярная энциклопедия