Лекции и задачи по физике Ядерная физика

Учебник для Худ-графа
Живопись 19 век
Архитектура 19 века
Культура 20 века
Скульптура
Искусство
Западний Европы
Искусство России
Архитектура Германии
Антонио Канова
Бертель Торвальдсен
Готфрид фон Шадов
Живопись Испании
Франсиско Гойя
Живопись Франции
Жак Луи Давид
Антуан Гро
Жан Огюст Доминик Энгр
Теодор Жерико
Эжен Делакруа
Живопись Германии
Филипп Отто Рунге
Каспар Давид Фридрих
Живопись Англии
Уильям Блейк
Джон Констебл
Джеймс Уистлер
Уильям Тернер
Архитектура и скульптура
Огюст Роден
Камиль Коро
Жан Франсуа Милле
Оноре Домье
Эдуард Мане
Импрессионизм
Клод Моне
Огюст Ренуар
Неоимпрессионизм
Жорж Сера
Постимпрессионизм
Поль Гоген
Живопись Германии
Андерс Цорн
Искусство XIX-XX веков
Обри Бердсли
Гютсав Моро
Одилон Редон
Пьер Морис Дени
Анри Руссо
Модерн
Фердинанд  Ходлер
Джеймс Энсор
Архитектура
Отто Вагнер
Йозеф Хофман
Чарлз Ренни Макинтош
Луис Салливен
Эктор Гимар
Петер Беренс
Антуан Бурдель
Аристод Майоль
Искусство XX века
Людвиг Мисс Ван дер Роэ Один из ведущих архитекторов Германии и США
Ле Корбюзье
Архитектура второй
половины XX века
Национальный конгресс
Скульптура
Генри Мур
Скульптура конструктивизма
Живопись
Фовизм
Анри Матисс
Экспрессионизм
Кубизм
Пабло Пикассо
Футуризм
Неопластицизм
Дадаиз
Сюрреализм
Сальвадор Дали
Оп-арт
Гиперреализм
Боди-арт
Концептуализм
Искусство России
Архитектура
Союз архитекторов
Всероссийский выставочный центр
Дворец съездов
Скульптура
Рабочий и колхозница
Воин-освободитель
Памятник Юрию Долгорукому
Живопись
Кузьма Петров-Водкин
Выставка Бубновый валет
Выставка «Ослиный хвост»
Марк Шагал
Василий Кандинский
Павел Филонов
Кубофутуризм
Казимир Малевич
Владимир Татлин
Художественные объединения
Общество Московских
Художников
Лианозовская группа
Сюрреализм
Соц-арт
Искусство Доколумбовой
Америки
Культура Ацтеков
Европа 18 век
Луврский музей в Париже
Архитектура Позднего
Барокко
Британский музей
в Лондоне
Картинная галерея старых мастеров в Дрездене
Архитектура
Санкт-Петербурга
Европа 17 век
Болонская академия
Эль Греко
Питер Пауэл Рубенс
Рембрандт Ван Рейн
Никола Пуссен
Искусство Возрождения
Леонардо да Винчи
Живописец Рафаэль
Искусство Маньеризма
Микеланджело Буонарроти
3D Studio Max
Установка
Моделирование
Освещение и текстуры
Анимация и визуализация
Советы
Программа Maya
Методы работы
Моделирование
Полигоны
Освещение
Анимация и визуализация
Эффекты рисования
Эффективность и артистичность
Графический редактор ACAD
Основные понятия
Подготовка рабочей среды
Черчение в ACAD
Трехмерное моделирование

Элементы физики атомного ядра Размер, состав и заряд атомного ядра. Массовое и зарядовое числа

Спин ядра и его магнитный момент Использование приборов высокой разрешающей способности и специальных источников возбуждения спектра позволило обнаружить сверхтонкую структуру спектральных линий. Ее существование В. Паули объяснил (1924) наличием у атомных ядер собственного момента импульса (спина) и магнитного момента.

Радиоактивное излучение и его виды Французский физик А. Беккерель (1852—1908) в 1896 г. при изучении люминесценции солей урана случайно обнаружил самопроизвольное испускание ими излучения неизвестной природы, которое действовало на фотопластинку, ионизировало воздух, проникало сквозь тонкие металлические пластинки, вызывало люминесценцию ряда веществ. Продолжая исследование этого явления, супруги Кюри — Мария (1867—1934) и Пьер — обнаружили, что беккерелевское излучение свойственно не только урану, но и многим другим тяжелым элементам, таким, как торий и актиний.

Закономерности a-распада В настоящее время известно более двухсот a-активных ядер, главным образом тяжелых (А>200, Z>82). Только небольшая группа a-активных ядер приходится на область с А = 140 ¸160 (редкие земли). a-Распад подчиняется правилу смещения

Гамма-излучение и его свойства Экспериментально установлено, что g-излучение не является самостоятельным видом радиоактивности, а только сопровождает a- и b-распады и также возникает при ядерных реакциях, при торможении заряженных частиц, их распаде и т. д. g-Спектр является линейчатым. g-Спектр — это распределение числа g-квантов по энергиям (такое же толкование b-спектра дано в §258). Дискретность g-спектра имеет принципиальное значение, так как является доказательством дискретности энергетических состояний атомных ядер.

Методы наблюдения и регистрации радиоактивных излучений и частиц Практически все методы наблюдения и регистрации радиоактивных излучений (a, b, g) и частиц основаны на их способности производить ионизацию и возбуждение атомов среды. Заряженные частицы вызывают эти процессы непосредственно, а g-кванты и нейтроны обнаруживаются по ионизации, вызываемой возникающими в результате их взаимодействия с электронами и ядрами атомов среды быстрыми заряженными частицами. Вторичные эффекты, сопровождающие рассмотренные процессы, такие, как вспышка света, электрический ток, потемнение фотопластинки, позволяют регистрировать пролетающие частицы, считать их, отличать друг от друга и измерять их энергию.

Ядерные реакции и их основные типы Ядерные реакции — это превращения атомных ядер при взаимодействии с элементарными частицами (в том числе и с g-квантами) или друг с другом. Наиболее распространенным видом ядерной реакции является реакция, записываемая символически следующим образом

Открытие нейтрона. Ядерные реакции под действием нейтронов Нейтроны, являясь электрически нейтральными частицами, не испытывают кулоновского отталкивания и поэтому легко проникают в ядра и вызывают разнообразные ядерные превращения. Изучение ядерных реакций под действием нейтронов не только сыграло огромную роль в развитии ядерной физики, но и привело к появлению ядерных реакторов

Цепная реакция деления Испускаемые при делении ядер вторичные нейтроны могут вызвать новые акты деления, что делает возможным осуществление цепной реакции деления — ядерной реакции, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Цепная реакция деления характеризуется коэффициентом размножения k нейтронов, который равен отношению числа нейтронов в данном поколении к их числу в предыдущем поколении.

Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций Источником огромной энергии может служить реакция синтеза атомных ядер — образование из легких ядер более тяжелых

Элементы физики элементарных частиц Космическое излучение Развитие физики элементарных частиц тесно связано с изучением космического излучения — излучения, приходящего на Землю практически изотропно со всех направлений космического пространства. Измерения интенсивности космического излучения, проводимые методами, аналогичными методам регистрации радиоактивных излучений и частиц, приводят к выводу, что его интенсивность быстро растет с высотой, достигает максимума, затем уменьшается и с h »50 км остается практически постоянной

Мезоны и их свойства С. Пауэлл (1903—1969; английский физик) с сотрудниками, подвергая на большой высоте ядерные фотоэмульсии действию космических лучей (1947), обнаружили ядерно-активные частицы — так называемые p-мезоны (от греч. «мезос» — средний), или пионы. В том же году пионы были получены искусственно в лабораторных условиях при бомбардировке мишеней из Be, С и Сu a-частицами, ускоренными в синхроциклотроне до 300 МэВ. p-Мезоны сильно взаимодействуют с нуклонами и атомными ядрами и, по современным представлениям, обусловливают существование ядерных сил.

Частицы и античастицы Гипотеза об античастице впервые возникла в 1928 г., когда П. Дирак на основе релятивистского волнового уравнения предсказал существование позитрона, обнаруженного спустя четыре года К. Андерсеном в составе космического излучения. Электрон и позитрон не являются единственной парой частица — античастица. На основе релятивистской квантовой теории пришли к заключению, что для каждой элементарной частицы должна существовать античастица (принцип зарядового сопряжения). Эксперименты показывают, что за немногим исключением (например, фотона и p0-мезона), действительно, каждой частице соответствует античастица.

Классификация элементарных частиц. Кварки В многообразии элементарных частиц, известных к настоящему времени, обнаруживается более или менее стройная система классификации. Для ее пояснения в табл. 8 представлены основные характеристики рассмотренных выше элементарных частиц. Характеристики античастиц не приводятся, модули зарядов и странности, массы, спины, изотопические спины и время жизни частиц и их античастиц одинаковы, они различаются лишь знаками зарядов и странности, а также знаками других величии, характеризующих их электрические (а следовательно, и магнитные) свойства

Электрический ток в жидкостях

Электролиты – жидкие или твердые вещества и системы, в которых наблюдается ионная проводимость.

Электролитическая диссоциация – распад молекул электролита на отдельные положительно и отрицательно заряженные ионы под влиянием электрического поля.

Электролиз – совокупность электрохимических процессов, проходящих на электродах, погруженных в электролит при прохождении по нему электрического тока.

Первый закон электролиза (первый закон Фарадея): масса m выделившегося на аноде вещества пропорциональна времени t прохождения через электролит тока и силе тока I:

m = kIt,

где k – электрохимический эквивалент вещества, который численно равен массе вещества, выделившейся при электролизе, если через электролит идет ток в один ампер в течение одной секунды.

Второй закон электролиза (второй закон Фарадея): электрохимический эквивалент вещества прямо пропорционален его химическому эквиваленту:

,

где A = m/n – химический эквивалент вещества; m – молярная масса;

n – заряд иона;  – постоянная Фарадея, численно равная заряду, который должен пройти через электролит, чтобы на электроде выделилась масса вещества, численно равная электрохимическому эквиваленту k; qn = n×e – заряд одного иона; e – абсолютная величина заряда электрона; NА – число Авогадро.

Гальванопластика – получение металлических отпечатков рельефных предметов (медалей, монет и т.п.).

Гальваностегия – электролитическое осаждение металлов.

Рафинирование (очистка) металлов – получение чистых металлов.

Электрометаллургия – получение металла с помощью электролиза руд в расплавленном состоянии.

Электролитическое травление и полировка – травление и полировка поверхностей с использованием электролиза.

Электрохимический потенциал – электрический потенциал, приобретаемый металлом относительно электролита в процессе электролиза. Характеризует состояние какого–либо компонента i в фазе a при определенных внешних условиях. Работа по переносу заряженной частицы i из бесконечно удаленной точки с нулевым потенциалом внутрь фазы a, умноженная на число Авогадро.

Электродвижущая сила гальванического элемента – максимальная работа химических реакций, рассчитанная на единицу заряда:

,

где Q1, Q2 – тепловые эффекты реакций на обоих электродах, рассчитанные на один килограмм–атом; Z1, Z2 – валентности вещества электродов.

Закон Ома для электролитов:

,

где  – удельная электрическая проводимость раствора электролита; q – заряд иона одного знака; b+, b– – подвижности положительных и отрицательных ионов (отношение скорости дрейфа к напряженности электрического поля b = vд/E); a = N/N0 – коэффициент диссоциации; N – концентрация ионов; N0 – концентрация молекул растворенного вещества; E – напряженность электрического поля.

Электрический ток в вакууме и газах

Вакуум – состояние газа при давлении меньше атмосферного. Понятие "вакуум" применяется к газу в замкнутом или откачиваемом сосуде или в свободном пространстве, например в космосе.

Физическая характеристика вакуума – соотношение между длиной свободного пробега l молекул газа и размером d, характерным для каждого конкретного процесса или прибора (расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода, расстояние между электродами электровакуумного прибора и т.п.).

Длина свободного пробега молекул в вакууме определяется отношением средней скорости молекулы к числу столкновений:

l = 0,056/(r2×n),

где r – радиус молекулы; n – число молекул в единице объема.

Низкий вакуум – такой, которому соответствует давление p>133,3 Па, а соотношение между длиной свободного пробега l молекул газа и размером d

l/d<<1.

Средний вакуум – такой, которому соответствует давление p от 133,3 Па до 133,3×10–3 Па, а соотношение между длиной свободного пробега l молекул газа и размером d

l/d~1.

Высокий вакуум – такой, которому соответствует давление p<133,3 Па, а соотношение между длиной свободного пробега l молекул газа и размером d

l/d>>1.

Сверхвысокий вакуум – такой, которому соответствует давление p<133,3×10–8 Па.

Потенциальная энергия электрона в металле относительно вакуума отрицательна:

W = –e×j,

где e – заряд электрона; j – внутренний потенциал (положительный потенциал внутренней части металла).

Работа выхода электрона из металла в вакууме равна “глубине потенциальной ямы”:

,

где b = e×j – “глубина потенциальной ямы”.

Эмиссия электронов – выход свободных электронов из металлов.

Вторичная эмиссия электронов – эмиссия электронов под воздействием ударов частиц о поверхность металла.

Фотоэмиссия электронов – эмиссия электронов под воздействием падающего на металл света.

Термоэлектронная эмиссия – эмиссия электронов, порождаемая их тепловым движением.

Условие, при котором электрон может покинуть металл, имеет вид

,

где m – масса электрона; vn – проекция скорости электрона на направление нормали к поверхности металла.

Распределение плотности электронов в электронном облаке, которое находится в равновесии с металлом:

,

где n¢ – плотность электронов в электронном облаке; n0 – плотность электронов внутри металла; j¢ – потенциал поля, образуемого зарядом электронного облака; k – постоянная Больцмана; T – абсолютная температура.

Плотность электронного облака у поверхности металла:

.

Распределение электронов в металле по энергетическим уровням (распределение Ферми–Дирака):

,

где b = 1/kT; ni – число электронов, имеющих энергию Ei; qi – число квантовых состояний, соответствующих энергии Ei;  – энергия Ферми при температуре T, которая при T®0 стремится к m0.

Зависимость плотности электронного облака вблизи поверхности металла от работы выхода электронов из металла:

,

где Ф = (W0 – m) работа выхода электронов из металла; Wk – кинетическая энергия электронов вблизи поверхности металла.

Термоэлектронный ток представляет собой движущиеся под действием электрического поля электроны электронного облака.

Максимальная сила тока (сила тока насыщения) – сила тока, обусловленная движением электронов, попадающих через поверхность катода в электронное облако и не возвращающихся внутрь катода, под действием внешнего электрического поля.

Зависимость силы тока насыщения от работы выхода электронов из металла и температуры:

.

Плотность тока насыщения определяется соотношением (формула Ричардсона–Дешмана):

,

где h – постоянная Планка.

Зависимость плотности тока от приложенного напряжения между электродами в вакууме (закон трех вторых):

,

где d – расстояние между электродами, расположенными в вакууме; U – напряжение (разность потенциалов), приложенное к электродам.

Уравнение Пуассона для потенциала имеет вид

,

где n – концентрация электронов.

Закон сохранения энергии для дрейфа электронов:

,

где vд – скорость дрейфа электронов в точке с потенциалом j.

Вторичная электронная эмиссия – явление испускания электронов с поверхности металлов, полупроводников и диэлектриков при бомбардировке их пучком электронов.

Вторичные электроны – электроны, которые выбиваются с поверхности первичными электронами.

Коэффициент вторичной эмиссии – отношение полного количества электронов эмитирующей поверхностью к числу первичных электронов:

,

где N – полное количество эмитирующих электронов; N0 – число первичных электронов.

Ионизация газа – процесс вырывания из электронной оболочки атома одного или нескольких электронов под влиянием различных факторов (высоких температур, рентгеновских, ультрафиолетовых и космических лучей, радиоактивных излучений, в результате столкновений атома с электронами и другими быстрыми частицами).

Рекомбинация атомов – процесс соединения положительных ионов с отрицательными ионами или электронами после прекращения действия ионизатора, в результате которого образуются нейтральные атомы.

Уравнение баланса ионов в газе:

,

где a – коэффициент рекомбинации ионов разных знаков; q – число пар ионов разных знаков.

Энергия ионизации атома или молекулы – минимальная энергия, которую необходимо затратить на ионизацию атома или молекулы.

Потенциал ионизации – разность потенциалов, которую должен пройти электрон, чтобы приобрести энергию, равную энергии ионизации.

Плотность электрического тока в газах определяется выражением

,

где n – концентрация ионов по всему объему; e – заряд ионов; b+, b– – подвижности ионов; E – напряженность электрического поля.

Закон Ома в слабых электрических полях:

.

Закон Ома в сильных электрических полях и в случае малых концентраций ионов n:

,

где ℓ – длина ионизационной камеры.

Квазинейтральный газ – идеализированный газ, в котором с высокой степенью точности выполняется равенство концентраций положительных и отрицательных ионов: n+ = n–.

Электронная лавина – лавинообразное нарастание числа электронов по мере их приближения к аноду.

Теория Таусенда – теория прохождения электрического тока через газ, которая учитывает ударную ионизацию атомов и молекул, ограничивающаяся стационарным режимом, т.е. таким, при котором все величины, характеризующие заряд, не зависят от времени.

Полная плотность электрического тока (согласно теории Таусенда) остается постоянной на всем протяжении от катода к аноду:

j = je + jp = const,

где j – полная плотность тока; je – плотность электрического тока электронов; jp – плотность электрического тока положительных ионов.

Плотность электрического тока электронов

,

где C – постоянная интегрирования, которая определяется граничными условиями на электродах; a – коэффициент ионизации, который определяется как среднее число ионов одного знака, производимое электронами на единице длины своего пути; b – коэффициент ионизации, который характеризует ионизующую способность положительных ионов.

Условие пробоя газа или зажигания газового разряда:

,

где g – среднее число электронов, вырываемых из катода одним положительным ионом.

Закон Пашена: если в нескольких разрядных трубках с плоскими электродами создать условия, при которых произведения давления p на расстояние l между электродами постоянны, то для всех трубок потребуется одна и та же разность потенциалов, чтобы вызвать газовый разряд.

Виды разрядов в газах: тлеющий разряд, искровой разряд, коронный разряд и дуговой разряд.

Тлеющий разряд – самостоятельный стационарный разряд, в котором катод испускает электроны вследствие бомбардировки его положительными ионами и фотонами, образующимися в газе. Для тлеющего разряда характерна большая напряженность электрического поля и соответствующее ей большое падение потенциала вблизи катода (катодное падение) и сравнительно малой плотностью тока.

Искровой разряд – неустановившийся электрический разряд, возникающий в том случае, когда непосредственно после пробоя разрядного промежутка напряжение на нем падает в течение очень короткого времени (от нескольких долей микросекунды до сотен микросекунд) ниже величины напряжения погасания разряда.

Коронный разряд – самостоятельный высоковольтный электрический разряд в газе при давлении порядка атмосферного, возникающий в резко неоднородном электрическом поле вблизи электродов с большой кривизной поверхности (тонкая проволочка, острие).

Дуговой разряд – самостоятельный квазистационарный электрический разряд в газе при любых давлениях, превышающих 133,3×10–2¸133,3×10–4 Па, при постоянной или меняющейся с низкой частотой (до 103 Гц) разности потенциалов между электродами. Отличается высокой плотностью тока на катоде (102¸108 А/см2) и низким катодным падением потенциала, не превышающим эффективного потенциала ионизации среды в разрядном промежутке.

Плазма – частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы (ионизованный квазинейтральный газ).

Идеальная плазма – потенциальная энергия взаимодействия частиц мала по сравнению с их тепловой энергией.

Степень ионизации плазмы a – отношение числа ионизованных атомов к полному их числу в единице объема.

Слабо ионизованная плазма – a порядка долей процента.

Умеренно ионизованная плазма – a составляет несколько процентов.

Полностью ионизованная плазма – a близка к 100%.

Изотермическая плазма – плазма, для которой температура всех компонентов одинакова (Te – электронная температура; Ti – ионная температура; Ta – температура нейтральных атомов).

Низкотемпературная плазма – принято считать плазму с Ti £ 105 К.

Высотемпературная плазма – принято считать плазму с Ti ~ 106¸108 К.

Основные свойства плазмы:

а) квазинейтральность – плотность положительных и отрицательных зарядов одинакова;

б) коллективность взаимодействия частиц – одновременно взаимодействуют друг с другом большое число частиц;

в) появление в плазме объемных зарядов и токов под влиянием электрического и магнитного полей – этим обусловливается ряд специфических свойств плазмы.

Дебаевская длина (дебаевский радиус экранирования) – определяет размеры области, в которой не могут происходить заметные нарушения квазинейтральости плазмы:

.

Условие квазинейтральности плазмы – линейные размеры области существования плазмы должны быть намного больше дебаевской длины.

Ленгмюровские волны в плазме – продольные колебания пространственного заряда.

Плазменная частота (частота ленгмюровских волн):

,

где n–объемная плотность зарядов плазмы; m, e –масса и заряд электрона.

Циклотронные частоты – частоты, с которым совершают вращательное движение заряженные частицы плазмы в магнитном поле:

,

где B – индукция магнитного поля.

Ларморовские спирали – траектории движения заряженных частиц плазмы в магнитном поле, радиус которых определяется соотношением:

,

где v^ – перпендикулярная вектору индукции магнитного поля B составляющая скорости движения частицы.

Прицельный параметр r^ – расстояние, при котором угол отклонения электрона от первоначального направления порядка 900:

.

“Эффективное поперечное сечение” с учетом дальних взаимодействий электрона с положительными ионами:

,

где Z – число элементарных зарядов положительных ионов плазмы;   – кулоновский логарифм.

Время свободного пробега электрона в плазме – промежуток времени, в течение которого направление движения электрона меняется на угол порядка 900:

.

Диамагнетизм плазмы – явление, при котором уменьшается внешнее магнитное поле за счет магнитных полей круговых токов, обусловленных вращением электронов и ионов плазмы.

Магнитный момент круговых токов заряженных частиц плазмы

.

Удельная проводимость плазмы

.

История живописи, архитектуры, скульптуры Популярная энциклопедия