Вычисление тройного интеграла в декартовых и других координатах Двойной интеграл в полярных координатах Объём цилиндрического тела. Сферические координаты

Математика курс лекций, примеры решения задач

Решение примерного варианта контрольной работы №2

Задача 1. Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Указание. Считать плотность вещества .

Решение.

 Область D (рис. 11) представляет собой криволинейный треугольник MNK, где . Для определения координат точки М решаем систему уравнений:

Область D – правильная в направлении оси Oх, она задается системой неравенств:  где  – это уравнения линий, ограничивающих область слева и справа.

Найдем статический момент пластинки MNK относительно оси Ox по формуле (11):

.

Для вычисления двойного интеграла сводим его к повторному интегралу в соответствии с системой неравенств, задающих область D:

Ответы: Mx = 4,125 ед. стат. момента; область интегрирования на рисунке 11.

Задача 1. Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Указание. Считать плотность вещества .

Решение.

 Область D (рис. 11) представляет собой криволинейный треугольник MNK, где . Для определения координат точки М решаем систему уравнений:

Задача 2. Используя тройной интеграл в цилиндрической системе координат, вычислить массу кругового цилиндра, нижнее основание которого лежит в плоскости xOy, а ось симметрии совпадает с осью Oz, если заданы радиус основания R = 0,5, высота цилиндра H = 2 и функция плотности , где r – полярный радиус точки.

Решение.

  Массу кругового цилиндра можно вычислить, используя тройной интеграл по области V, по формуле (12):

,

где – функция плотности, а V – область, соответствующая цилиндру.

Переходя к трехкратному интегралу в цилиндрических координатах, получаем:

Для вычисления работы используем криволинейный интеграл II рода (формула (13)): .

Составленный криволинейный интеграл сводим к определенному интегралу, используя параметрические уравнения кривой ВС:

.

Для заданной кривой получаем:

Таким образом, для нахождения работы нужно вычислить определенный интеграл:

  Сделаем замену переменной в определенном интеграле:

Задача 4. Задан радиус-вектор движущейся точки:

 . Найти векторы скорости и ускорения движения этой точки через 2 минуты после начала движения.

Решение.

Вектор-функция задана в виде: .

Найдем первые и вторые производные ее проекций x(t), y(t) z(t) по аргументу t:

Найдем векторы скорости и ускорения движения точки по формулам (14) и (15):

.

Через 2 минуты после начала движения векторы скорости и ускорения будут:

Задача 6. Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы  при перемещении единичной массы из точки M(0,1,0) в точку N(–1,2,3).

Решение.

Для проверки потенциальности векторного поля  найдем его ротор по формуле (19):

Следовательно, поле потенциально.

 Для проверки соленоидальности поля найдем его дивергенцию по формуле (17):

.

Следовательно, поле не соленоидально.

Функция нескольких переменных и ее частные производные


Тройной интеграл в сферических координатах