Определение производной функции, ее геометрический и физический смысл Площадь плоской криволинейной трапеции Вычисление длины дуги кривой

Математика курс лекций, примеры решения задач

ЗАДАНИЕ 7. Найти объем тела, ограниченного указанными поверхностями.

 Приведем решение двух задач на вычисление объемов тел, рассматривая тела с различной геометрией поверхности.

1) ,

2)   .

РЕШЕНИЕ.

 1). Тело  ограничено двумя поверхностями: параболоидом   и плоскостью . Изобразим это тело на чертеже (рис.75).

Рис.75

 Данное тело является -цилиндрическим брусом (рис.72); боковая поверхность выродилась в линию пересечения заданных поверхностей. Найдем область, в которую тело проектируется на плоскость , для чего из уравнений поверхностей, ограничивающих тело, следует исключить переменную  (т.е. совершить ортогональное проектирование):

 и .

Таким образом, областью () является круг с центром в точке (0; 1) радиуса =1  (см. рис.75).

 Объем тела может быть вычислен с помощью тройного интеграла по формуле  . В декартовой системе координат тройной интеграл записывается через повторный следующим образом:

,

откуда видно, что его вычисление сопряжено со значительными трудностями (на завершающей стадии вычисления повторного интеграла).

 Запишем интеграл в цилиндрической системе координат , с которой декартова система связана формулами

.

Якобиан преобразования . Формула перехода (в интеграле) имеет вид

.

В нашем случае

.

Запишем уравнения параболоида и плоскости в цилиндрической системе координат:

.

Для окружности  имеем ; угол , очевидно, необходимо менять в пределах от 0 до . Таким образом ,

 

===.

Ответ. =.

 2) Изобразим тело , ограниченное поверхностями цилиндра , параболоида  и плоскостью  (рис.76).

Рис.76

Чтобы тройной интеграл записать в виде повторного, перейдем в уравнениях ограничивающих тело поверхностей к сферическим координатам. Следует использовать соотношения

.

Уравнение  переходит в , уравнение   в ; для уравнения конуса  получим последовательно: ,   и , откуда  и ; уравнение плоскости  переходит в уравнение , уравнение плоскости  в , т.е. в . Таким образом,

.

 Так как подынтегральная функция представляет собой произведение функций, каждая из которых зависит только от одной переменной, а пределы интегрирования постоянны, то повторный интеграл представляет собой просто произведение трех интегралов

ЗАДАНИЕ 9. Найти массу пластинки

(): ,

Плотность массы пластинки 

РЕШЕНИЕ.

 Область () – это часть эллиптического кольца (на рис.78 область () заштрихована). Массу плоской области можно вычислить по формуле

.

Подставляя заданную плотность  в двойной интеграл, для массы получим

.

Рис.78

 Очевидно, что область () не является ни -, ни - трапецией; при вычислении двойного интеграла в декартовой системе координат область () пришлось бы разбить на три области. Как для областей, заключенных между концентрическими окружностями с центром в начале координат “родной” является полярная система координат, так и для эллиптических колец “своей “ является эллиптическая система координат (обобщенная полярная система координат)

Цилиндрический брус проектируется на плоскость  в криволинейную трапецию (D): 0 x 1, 0 y . Преобразуем тройной интеграл в повторный и вычислим его:

=

=[ замена переменных  ]=

Замечание. В цилиндрической системе координат вычисления упрощаются:

ЗАДАНИЕ 11. Вычислить криволинейный интеграл

по формуле Грина; замкнутый контур () складывается из двух кривых:  и  (см. рис. 80).

ЗАДАНИЕ 12. Вычислить массу дуги кривой () при заданной плотности :

1)  

2) (.

3) (.

РЕШЕНИЕ.

1) Рассматривается случай параметрического задания кривой (). Массу плоской кривой можно вычислить с помощью криволинейного интеграла первого рода: . Для вычисления его нужно свести к определенному интегралу от функции одной переменной по отрезку по формуле:

.

РЕШЕНИЕ.

Работа силы по перемещению материальной точки единичной массы есть линейный интеграл вдоль дуги  от точки  до точки 

.

Последний интеграл есть криволинейный интеграл второго рода по пространственной кривой . Его вычисление сводится к вычислению определенного интеграла, для чего кривую  надо представить в параметрической форме (условием задачи кривая  задана в виде линии пересечения поверхности кругового цилиндра  с плоскостью , см. рис.81).


Функции нескольких переменных