Определение производной функции, ее геометрический и физический смысл Площадь плоской криволинейной трапеции Вычисление длины дуги кривой

Математика курс лекций, примеры решения задач

Неопределенный интеграл. Табличное интегрирование.

Задания для подготовки к практическому занятию

Прочитайте лекции §16 и §17.1 и приведенные ниже примеры. Ответьте письменно на вопросы и решите задачи.

Выучите основную таблицу интегралов. Интегрирование выражений, содержащих квадратный трехчлен. Основные идеи заключаются в выделении в квадратном трехчлене полного квадрата и в проведении линейной замены, позволяющей свести исходный интеграл к табличным вида

Примеры

1. Проверьте, верно ли найден интеграл:

Решение. Произвольное постоянное слагаемое С – непременный атрибут любого неопределенного интеграла. Чтобы проверить, верно ли найдена первообразная функция в правой части данного равенства, следует найти ее производную:

.

Поскольку полученная производная не совпадает с подынтегральной функцией , значит, интеграл найден не верно.

(Заметим впрочем, что исправить ситуацию в данном случае легко, домножив правую часть данного равенства на : .)

 Вычислить интегралы:

2. ;  3. ; 4.; 5.

Решение:

2. Данный интеграл является табличным (№10) с точностью до постоянного множителя 2 перед х2:

3. Представим дробь под интегралом в виде суммы, разделив почленно числитель на знаменатель:

.

4. Чтобы свести данный интеграл к табличным, применим простые тригонометрические преобразования:

5. Интеграл отличается от табличного (№3) линейной заменой (5-3х вместо х). Воспользуемся правилом линейной замены (§17.1):

.

Примеры

1. Проверьте, верно ли найден интеграл:

Решение. Произвольное постоянное слагаемое С – непременный атрибут любого неопределенного интеграла. Чтобы проверить, верно ли найдена первообразная функция в правой части данного равенства, следует найти ее производную:

Замена переменной; интегрирование по частям

Задания для подготовки к практическому занятию

Прочитайте §17.2, 17.3 лекций и предложенные рассуждения и примеры. Решите задачи.

При вычислении любого неопределенного интеграла следует ответить для себя на следующие вопросы:

- является ли интеграл табличным? Может быть, он отличается от табличного лишь линейной заменой?

- если нет, может ли интеграл быть упрощен, то есть можно ли представить подынтегральную функцию в виде суммы (в этом случае каждое из слагаемых интегрируется отдельно, начиная с первого вопроса)?

- если нет, имеет ли смысл пользоваться внесением под знак дифференциала? (впрочем, если вы не уверенно пользуетесь этим методом, этот вопрос можно опустить)

  Если на все три вопроса ответ отрицательный, стоит попробовать сделать замену переменной (подстановку). Обычно при выборе подстановки удобно бывает руководствоваться принципами:

Замена переменной и интегрирование по частям (продолжение)

Интегрирование выражений, содержащих квадратный трехчлен

Задания для подготовки к практическому занятию

Прочитайте §18.1 лекций и предложенные рассуждения, ответьте на вопросы и решите задачи

Итак, для вычисления неопределенного интеграла необходимо свести его к табличному, выбирая для этого на каждом шаге одно из трех действий:

- упрощение (разложение на слагаемые),

- замену переменной (включая сюда и внесение под дифференциал),

- интегрирование по частям.

Примеры

  - табличный интеграл (вынести )

Интегрирование рациональных функций

Задания для подготовки к практическому занятию

Прочитайте §18.2 лекций и предложенные рассуждения. Ответьте на вопросы и решите задачи.

 Для того, чтобы проинтегрировать рациональную дробь (многочлен в числителе, многочлен в знаменателе), обычно нужно ее упростить (как вы помните, это значит – представить в виде суммы).

Если дробь неправильная, то есть степень числителя не меньше степени знаменателя, следует числитель разделить на знаменатель, выделив целую часть.

Пример . Вычислить .

Так как дробь неправильная, выделим целую часть. Делить будем в столбик, примерно так, как делят числа: так, чтобы все время уничтожалась наивысшая степень делимого, для этого каждый раз элемент частного получается делением старшей степени делимого на старшую степень делителя:


Функции нескольких переменных